Cumulative Impact Assessment of the Nam Ou hydropower cascade

Peter-John Meynell 2 March 2016

The CIA of the Nam Ou hydropower cascade - Objectives and methods

- Aim of the CIA
 - To assess the impacts of all the cascades together in a wider, basin context
 - To assess impacts upon the Mekong
 - To identify the key issues for the watershed management strategy
- Use of Rapid Sustainability Assessment Tool (RSAT) to scope the CIA
 - RSAT used internally by the consultant team based upon their detailed knowledge
- CIA draws upon the findings of the ESIAs and compiles them and compares to the wider basin, the provinces and the country
- Rapid Field survey of the river and collection of data and interviews with provincial and district officials
- Use of indicators such as Millennium Development Goals

Nam Ou - one of the most important tributaries of the Mekong

- Largest catchment area in Lao PDR
- 6th largest river in terms of its contribution to flow of water
- 2nd after the 3S rivers in terms of sediment discharge.

Nam Ou is high compared to other tributaries in the Mekong catchment

- ·aquatic health,
- aquatic ecology and fish and fisheries yield,
- hydropower potential,
- land use and protected areas and
- River transport and tourism

Context - about the Nam Ou River

- Length: 448 km from headwaters near the Lao-China border to Mekong confluence
- Catchment: 26,030 km2 (24,637 km2 about 94.6 % located in Lao PDR and the remaining 5.4% lying in Northwestern of Viet Nam).
- Annual discharge: 12.2 BCM
- Mean annual flow: 480 m3/s
- Average minimum dry season flow: 85 m3/s
- 3 Provinces Phongsali, Oudomxay and Louangprabang,
- 15 districts (6 on Nam Ou mainstream, 9 on tributaries)
- Population c.450,000 of which over 70% live within 5 km of the river and tributaries

Upper Nam Ou

Fast flowing, rapids over bedrock and boulders, large sandbanks interspersed with deep pools

Middle Nam Ou

- Transition from sandstone to karst limestone
- Important tourism area

The Nam Ou hydropower projects

Characteristics of the dams and reservoirs

Cascade	Catchment size sg km	discharge	discharge	Spillway peak design flows cu.m/sec	Installed capacity	Annual production	Draw down m	Reservoir area sg km	Gross storage volume m.cu.m	Active storage volume m.cu.m	Distance from Mekong confluence km	Villages affected No	Project Affected Households No
Nam Ou at Mekong	•			, , ,							475	-	-
Cascade 1	25,495	604	1376	19,167	160	710	2	9.56	89.1	19.1	18	17	1818
Cascade 2	22,159	515	994	17,370	120	546	2	15.67	121.7	25.4	53	25	2297
Cascade 3	19,106	442	940	15,662	150	685	7	13.26	168.6	75.8	112	22	1222
Cascade 4	11,661	302	674	11,082	116	524	6	9.37	124	48	171	14	589
Cascade 5	10,270	276	547	14,700	240	1049	6	17.22	335	85	215	14	662
Cascade 6	5,480	161	349	10,200	180	739	15	17.01	409	199	283	6	323
Cascade 7	3,448	105	220	7,330	190	811	35	38.16	1494	958	327	4	103
Total					1156	5064		120.25	2,741.40	1400.3		102	7014

Population affected indices Active storage indicators River Regulation indices

		Population affo	Active storage indices			River regulation indices				
		Households affected/ MW	-	Active storage/	Mean	Active storage/ Mean flow at	% of river below			% Active storage/
Cascade	area	installed	area	installed	flow	confluence	dam	regulated	regulated	storage
Cascade 1	16.74	11.36	190.17	0.12	0.032	0.031	3.8	98.70	1.62	21.44
Cascade 2	7.66	19.14	146.59	0.21	0.049	0.042	11.2	85.78	1.40	20.87
Cascade 3	/11.31	8.15	92.16	0.51	0.171	0.124	23.6	73.96	2.03	44.96
Cascade 4	12.38	5.08	62.86	0.41	0.159	0.079	36.0	45.14	2.57	38.71
Cascade 5	13.94	2.76	38.44	0.35	0.308	0.139	45.3	39.76	6.04	25.37
Cascade 6	10.58	1.79	18.99	1.11	1.236	0.326	59.6	21.21	8.48	48.66
Cascade 7	4.98	0.54	2.70	5.04	9.124	1.570	68.8	13.35	14.23	64.12
All cascades combined	9.61	6.07	58.33	1.21	2.32	2.30	3.8	98.70	11.71	51.08

Cumulative Hydrological changes

- The patterns of flow down the river significantly altered, reflected in the flows downstream of cascade 1,
 - dry season flows reaching the Mekong confluence will increase by up to 73% and
 - peak wet season flows will be reduced by about 13%.
- These changes will alter the overall river morphology, aquatic habitats and productivity right through the whole river system.
- Cumulative impacts on Mekong compared to expected changes in flow resulting from
 - the Chinese dams on the Lancang River, and
 - the proposed dams on the Mekong mainstream above and below the confluence of the Nam Ou – Luang Prabang and Xayaburi HPPs.
 - Climate change

Cumulative Sediment changes

					1							
Baseline				eline	With cascades							
						Additional	Total					
					Sediment	Total	sediment	sediment				
				Sediment	trapping	sediment	from	inflow to	Sediment			
			Flow rate	flux	efficiency	trapped	catchment	cascade	release			
Cascade		•	cu.m/sec	MT/Yr	%		MT/Yr	MT/Yr	MT/yr			
	7		105	0.91	95	0.865			0.046			
	6		161	1.44	80 - 90	0.460	0.530	0.576	0.115			
	5		276	2.7	70 - 75	0.963	1.260	1.375	0.413			
	4		302	3.07	40 - 60	0.313	0.370	0.783	0.470			
	3	1	439	5.02	40 - 60	0.968	1.950	2.420	1.452			
	2		515	5.82	30 - 50	0.676	0.800	2.252	1.576			
	1	Stere	604	6.69	20 - 30	0.489	0.870	2.446	1.957	ĺ		
Tot	al .	١				4.733			1.957			
% of total baseline sediment flux						70.7			29.3			
		125	122	·	•		•	•				

- Nam Ou contributes 6.7 Million Tonnes per year one of the highest Mekong tributaries - about 4.8%
- Sediment transport changed dramatically. Nam Ou cascade will trap about 70%,
 - Reducing to about 2.5 Million tonnes per year.
- With the Chinese dams in place, contribution from the Nam Ou increases to about 32%.
- With Nam Ou cascade contribution of the remaining sediment reaching the Mekong will be reduced to 10% at the confluence.
- If the Mekong mainstream dams are in place, impacts reservoir of the Xayaburi dam, reducing the total amount of sediment transported into the reservoir.
- At confluence with Mekong tendency to drop the sediment coming in from the Nam Ou, especially filling up the deep pools in the reservoir.
- Significant changes in river morphology below the confluence between Nam Ou and Mekong – impacts on bank erosion and sedimentation

Water quality

- The water quality of the Nam Ou is generally good, localised areas where for example suspended solids levels are high,
 - result of road building,
 - gold mining and
 - upstream agricultural activities e.g. on the Nam Noua in Vietnam.
- Water quality issues from Nam Ou cascade
 - thermal stratification and release of poor quality waters from the cascades 6 and 7.
 - Below Cascade 1, water quality less concern,
 - overall reduction in TSS and turbidity
 - tendency for the river to pick up sediment downstream
- During construction of the Nam Ou cascade, more significant impact upon water quality,
 - Increased suspended sediments and turbidity,
 - increases in organic pollution and accidental spillages.
 - The filling of the cascades will also increase the organic load in the waters and tend to reduce the dissolved oxygen content.

Aquatic habitats and biodiversity

- Nam Ou recognised as one of most important tributaries for its biodiversity – aquatic habitats, fish species, migrations
- Nam Ou cascade will change this completely loss of 66% of fish biodiversity
- Loss of fish migrations will have a cumulative impact on wider Mekong
- Fisheries yields are high in Nam Ou and these will drop as soon as construction starts
- Reservoir fishery unlikely to be as high as before

Vegetation and Land cover

- High proportion of forest cover in basin, though most is unstocked forest
- Nam Ou cascade will disturb about 5000 ha of forest land – about 35% high quality forest,
- Implications of forest losses are more important locally within districts
- Nam Ou very high risk of soil erosion 87% classified as Class 1 and 2 soil erosion risk

Protected areas and forests

- Phou Den Din NPA affected by Cascades 6 and 7 representative NPA of Northern Laos
- Loss of 2.4% of total area but most significant habitat loss of riverine habitats in NPA
- In wider Nam Ou basin 43% of land area classified as protection forests, but land cover may be degraded
- Cascade will reduce collection of forest products and timber resources significantly especially in riparian woodlands

Cumulative social impacts

- Population of basin is about 358,000 people
- Densities are low, poverty is high
- Within corridor, there are 128 villages, with 45,000 people, who will be affected by the changes – 10,700 physically displaced
- By year 3 of construction, 13,600 workers 6% of Phongsali province, 17% in Phongsali district
- Employment benefits potentially one worker for every 5 households.
- Families and camp followers 2 3 x worker numbers
- Livelihood impacts loss of agricultural land, reduction in fish catches, increase in demand and prices of fish and NTFPs, pressure on wildlife
- Increased risks of contamination of water supplies
- Increase in easily transmissable diseases TB, STDs, HIV/AIDS

Impacts on Regional economy

- Nam Ou cascade contributes to national and local economy as per next 5 year Dev plan
- But contribution to provincial and district economy may not be as high as expected
- Cascade will tend to increase water availability e.g. for irrigation in dry season, but suitable land is limited
- Gold mining in river will be stopped
- Very significant impact upon tourism especially in the lower Nam Ou. Will start as soon as construction starts.
- Road network will be impacted by heavy traffic during construction, but overall will probably be improved
- River transport likely to decline will be more restricted to just transport on reservoirs

 with difficulties of transit around dams
- Other hydropower loss of one existing small plant, plans for seven other small HPPs
- Complete loss of pico-hydropower potential implications for extension of rural electrification

Cumulative Impact management – river basin management plan

- Based on findings of CIA a watershed management strategy for the river basin was produced
- This used the RSAT framework to provide a structure
- Recommended management measures to address the key issues
- Recommended establishment of Nam Ou River Basin Committee, with financial contributions from the hydropower company

Challenges to carrying out the CIA

- Advantage of having only one hydropower company for all 7 dams in cascade
- At the time, lack of clear guidance on what a CIA should consist of -
 - Need to define the scope at the beginning
- Lack of baseline data on many aspects of the river basin
- Uncertainty about other developments going on in the River basin, e.g. changes in land use – rubber and banana plantations
- No defined stakeholder consultation process for the CIA
- Difficulties in identifying meaningful indicators with which to assess the projected changes and impacts
 - Use of RSAT to provide a framework
 - Use of Millennium Development Goals

Thank You